Rolling Transport concludes with 2 approaches for accommodating wheeled artifacts architecturally. Although there is nothing really lacking in the usefulness of these simple configurations – IMO they serve their purpose very well – the wheel slot and the wheel port annexation are only 2-dimensional.

Therefore a deeper connection between template-guided transporter and the CBA architectural form is sought by again looking to the __macrocosmic wheel__. After aligning its central hexagonal edges longitudinally via __primary rotation__, the great wheel undergoes __secondary rotation__ such that any one of its outermost edges is oriented horizontally at a specified latitude.

Zooming in on the spot with the wheel’s innate microcosmic representative in attendance (below), perspective is turned to a polar view with edges of plane types sloping from each side of the horizontal edge identified.

Next, the wheel’s natural halves are separated and – with the triangularly sloped side held in place – the sloping square side is rotated 60° such that a sloping triangle mirrors that of the fixed side in the same __hexagonal shift__ that formed the basis of the __transport template__.

Then focus sharpens on the matched triangles which are detached from the microcosmic wheel and juxtaposed against the CBA’s latitude dependent roof.

To make the fit, the angle of the sloping triangles is adjusted such that the outer points contact the roof/wall juncture and the central ridge joining the triangles maintains a horizontal bearing.

The precise angle of adjustment (Φ) is of course related to the slope of the CBS roof (Δ)which in turn is either equal to the latitude (Θ) or complement (90° – Θ), and is given by the *fusion formula*:

Φ = ArcSine [ (√3/3) TanΔ ]

In temperate latitudes of both north and south hemispheres, both polar and equator-facing roofs are receptive to these fusions. Outside these latitudes the fusion can only be implemented on one roof.

Such latitudinal variation makes “triangular wings” an apt term for the mirrored pair. Spreading the wings to their extreme forms the rudiments of a hexagonal pattern viewed from above, while completely folded, they pose one triangle from either profile.

With the tri-wings fitted to the (rectangular) roof, the overhanging portion is clipped flush with the wall to leave 2 half triangles while appearing as nothing more than a highly specified cross gable.

As such the gable’s slope gives indication of latitude from a polar perspective (with the fusion formula solved for such) to round out expressions of the celestial cube projections from all directions viewable from the ground.

Together the clipped triangular wing halves add to one triangle if combined, and as such represents the simplest planar expression of the __bodal wheel__. Considerable time and thought went into this approach (after several previous ones were rejected as being lame) and I wasn’t exactly thrilled by this solution. Why? Because it wasn’t especially unique or novel. But as its sensibility quietly grew on me, I came to wonder if perhaps the cross gable was an instance where the code’s fundamentals were being followed in a groping intuitive way.

Whereas architectural annexations and wheel slots only involve walls, this fusion involves both the co-cube projection *and* the added dimension manifested by the roof. Neutralizing the macrocosmic wheel and making it symmetric via the __h-shift__ bestows upon the transporter it hosts an apt place of rest, while the tension created by the difference between template and adjusted angles can be viewed as the formation of a kind of potential energy from which to roll.